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The behavior of materials subjected to different loads depends substantially on the 
nature of the plastic flow that is determined by the internal structure of the material, the 
presence of different defects therein, the inhomogeneities, etc. For instance, the mechanism 
of plastic flow of metals is associated mainly with the motion of dislocations [I, 2]. The 
fracture of brittle media is governed by the presence of microcracks therein, resulting in 
stress concentration at the crack apex, where a plastic zone is formed [3]. Consequently, 
the plastic flow in brittle media turns out to be microscopically inhomogeneous, which dis- 
tinguishes them substantially from plastic media. The need to take account of the presence 
of internal inhomogeneities in describing the deformation and fracture of brittle media is 
mentioned in [4]. it is assumed in this paper that microcracks are the carriers of such in- 
homogeneities in brittle media. 

A model of the plastic flow of brittle media prior to fracture was first proposed in 
[5], where the mutual displacement of edges of the crack originating because of the presence 
of a plastic zone near the tip underlies the plastic flow mechanism. However, it was assumed 
in [5] that all cracks are of identical size. In this paper, this model is extended to the 
case of microcracks of different length. Also taken into account is the microcrack orienta- 
tion relative to the principal stress axes. An equation is obtained that describes material 
behavior prior to fracture for different kinds of loads. A fracture criterion is proposed 
that is based on the representation of fracture as the intersection of growing cracks. With- 
in the framework of the proposed approach, in particular the dependence of the mean size of 
pieces of the fractured rock on the loading parameters, is determined successfully'. The re- 
sults of solving the proposed equations are compared with experimental results on the slow 
compression of colophony specimens [4, 6]. 

i. Let us consider the macroscopic deformations of a cracked medium. These deforma- 
tions can be represented as the sum of elastic and plastic deformations associated with the 
presence of a plastic zone near the crack apex. The elastic deformations are distorted be- 
cause of the presence of cracks, resulting, in particular, in a dependence of the elastic 
moduli on the fracturing [7]. However, these effects are not considered in this paper. The 
plastic flow is associated with crack growth resulting in motion of the plastic zone through 
the bulk of the specimen. 

The magnitude of the plastic deformations can be calculated analogously to the derivation 
of the Orovan derivation within the framework of the dislocation model [I, 2]. To do this, 
we examine a specimen section with linear dimension L. The shear deformations of this speci- 
men, occurring during motion of one crack, will be determined by the relationship u = (A/L). 
(s/L), where 5 is the displacement of the crack edges related to the plastic flow at its apex, 
and s is the change in the length of this crack. Let us note that the quantity A/L determines 
the angle of shear from one crack, while s/L is the relative size of the zone included in 
the deformations. Differentiating the relationship obtained with respect to time, and sum- 
ming over all cracks, we obtain a relationship for the shear deformation rate 

oo 

d-~, _ t dT ~_cos 2 T . A  f v (l) n (1, t) dl, ( 1 . 1 )  
dt G dt 

0 

where ~ is the macroscopic shear deformation; T is the tangential stress; A is the crack edge 
displacement; and v is the rate of crack growth. The quantity n(s t)d~ defines the number 
of crack boundaries that intersect a unit surface whose linear dimensions are in the interval 
between ! and ! + d!. In deriving this relationship it was assumed that the value of A is 
identical for all growing cracks. It is reasonable to select the magnitude of the critical 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,. No. 4, 
pp. 138-144, July-August, 1985. Original article submitted April 17, 1984. 

0021-8944/85/2604-0579509.50 �9 1986 Plenum Publishing Corporation 579 



opening of a crack in the Leonov-Panasyuk model [3, 8] as an estimate of the value of A. 
The factor cos 2~ptakes account of the different orientation of the principal elastic and in- 
elastic deformation axes, where ~p is the difference between the slip and Coulomb angles. 
We shall henceforth omit this factor. 

The function n(!),t) is normalized relative to the total number of cracks intersecting 
the unit surface. Assuming the number of cracks remains constant, we obtain an equation for 
the function n ( ! ) ,  t) 

an(z,t)§ 
at (n(z, t) v(O}= O, ( 1 . 2 )  

which is essentially a continuity equation for the crack size distribution density. 

The crack growth rate v(~) depends on both the crack length and the magnitude of the 
external loads. We shall assume that under compression the crack growth rate is determined 
by the effective tangential stress [9, 10] that takes account of crack edge interaction: 

~ e f f = i % l = ~ l a ~ ]  ' I%[- %-%2 Isin20l, [ an l=  - -a l+%+al - -%c~ 2 (1 .3 )  

where 8 is the angle between the direction 01 and the crack plate; o~ and On are the tangen- 
tial and normal stresses in the crack; and ~ is the friction coefficient between the crack 
edges. In this paper the simplest dependence between the crack growth rate and ~ and ~eff 
will be used: 

0, K < Ko, 
v(l,~eff)= Vp, K ~ K  o, ( 1 . 4 )  

where K = ~eff4~ is the stress concentration factor at the crack apex. According to the de- 
pendence (1.4), only cracks whose length exceeds the quantity K~/(~ff) can grow. The growth 
rate of all such cracks is identical here and equal to vp. 

It follows from (1.3) and (1.4) that the cracks of maximal length grow most intensively 
in directions close to the directions of the maximal effective stresses governed by the con- 
dition cot 20 = ~. For simplicity we shall temporarily neglect the spread in the initial 
directions of the microcracks that start to grow first. Such a spread will be taken into 
account below, which will result in a change in the function of the number of growing cracks. 

The relationships (1.1)-(1.4) govern the dynamics of shear deformation up to fracture 
time. We take the condition of equal distances between growing cracks and their mean length 
s as fracture criterion 

lm Nm-l/~= I, ( 1 . 5 )  

where Nm i s  t h e  number of  growing c r acks  d e t e r m i n e d  by the  e x p r e s s i o n  

Nm= J n(4t) at. (1.6) 
/f2/~2 

o/ eff 

Then the mean length of the growing crack will be given by the relationship 

oo 

Im =N~l yZn( l, Odl. (1.7) 
0 

Taking (1.6) into account, we rewrite (i.I) in the form 

d? I dT 
dt--G dt~-AvpXm" ( 1 . 8 )  

A fracture criterion of the form (1.5) is correct in the case when the crack growth is 
accompanied by their effective intersection. Such a situation should be observed, in particu- 
lar, in fracture due to shear, when the most intensive crack growth occurs in two mutually 
intersecting directions. Use of the criterion (1.5) permits not only establishment of the 
fracture time but also determination of the mean size of the fractured rock pieces. 
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2. Before solving the equations describing deformation of the medium for a specific 
loading case, they must be reduced to dimensionless form, which permits investigation of 
their fundamental properties. For this, we introduce the function 

,.~ (z, t) = ~  n (z', t) dZ', 
l 

governing the concentration of cracks whose size exceeds 4. It follows from (1.2) that the 
total number of cracks Nt = N(0, t) remains constant during deformation and is a character- 
istic of the medium. It follows from (i.I) that the characteristic time governing th~ plast- 
ic deformation rate is the quantity t, = (NtAvp) -I. We assume that the condition Nt-~s << 
i is satisfied in the initial state, i.e., the medium is far from the fracture point. Then 
we select the characteristic length ~,~ = vpt, = (NtS) -I Finally, it follows from (1,4) that 
the characteristic strength parameters t 0 = K0//!0 must be selected, where !o is the charac- 
teristic dimension of the microcracks in the initial state. 

Introducing the dimensionless quantities 

f = t / t , ,  L = 1 / 1 , , s =  ~e f f /~o ,  f m ( s ) =  N m / N  t,  g = To~G, O = N~/2A, ( 2 . 1 )  

we can represent (1.8) and the fracture condition (1.5) in the dimensionless form 

d?Idt  = gdsldt  + f m  (s)i ( 2 .2  ) 

S~ (~ ~ = Dt (2.3) 

It is seen from the relationships (2.1)-(2.3) that the nature of the deformation prior 
to fracture is determined by the single dimensionlessparameter g that governs the magnitude 
of the elastic deformations. Moreover, it is necessary to give the deformation law [the de- 
pendence y(T) or s(T), e.g.]. At the same time, the fracture time itself will be determined 
by the dimensionless parameterD, the ratio between the crack edge displacement and the spac- 
ing between the cracks. 

To solve the equations describing deformation of the medium, the nature of the external 
loading must be given. Let us consider the case of a constant deformation rate i = const. 
The single dimensionless parameter characterizing the external loading will be 

Then we w r i t e  ( 2 . 2 )  as  

g ~ / d r  = R --/m(s). 

The solution of this equation has the form 

T : = g j  R--fm(s')  
0 

(2.4) 

and yields the dependence s(T) in implicit form. 

As seen from the definition (2.2), the function fm(s) << i. Then it follows from (2.4) 
that two cases must be examined: R > i and R < i. In the former case the denominator in 
the integrand in (2.4) never vanishes. For small stresses fm(s) << i the dependence s(T) is 
linear in nature: 

s(s = R r / g .  ( 2 . 5 )  

As the stress grows, fm(s) grows and the plastic flow starts to have a noticeable effect. A 
nonlinear section hence appears on the curve s(T). For a further growth of s, fm(s) reaches 
its limit value and the dependence s(T) again becomes linear: s(T) = (R - l)T/g. In this 
case the plastic flow results in a diminution in the modulus G [Geff = G(I - I/R)] and a de- 
pendence of the effective elastic modulus Geff on the deformation rate appears. 

In the second case (R < i) the role of the plastic flow turns out to be more substantial. 
For small s the dependence s(T) is elastic in nature, given by (2.5). As the stress grows 
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fm(s) grows and the denominator in (2.4) tends to zero. Here s approaches asymptotically to 
its limit value Smax defined by the implicit expression 

G:~,,,:,:~ i~. (2.6) 

I n  o r d e r  t o  o b t a i n  a s p e c i f i c  f o r m  o f  t h e  d e f o r m a t i o n  c u r v e s ,  t h e  f r a c t u r e  t i m e  a n d  t h e  
mean s i z e  o f  t h e  p i e c e s  o f  f r a c t u r e d  r o c k ,  i t  i s  n e c e s s a r y  t o  g i v e  t h e  s p e c i f i c  f o r m  o f  t h e  
c r a c k  s i z e  d i s t r i b u t i o n .  We t a k e  t h e  u n i f o r m  d i s t r i b u t i o n  

no(z) % (N,/I,,),I(I. - -  l) ( 2 . 7 )  

as such a distribution, but it describes the crack distribution in a broad interval s poorly. 
However, in the case of small deformation rates (R << i) the contribution to the deformation 
is given by a small fraction of the cracks near the maximal dimension s Consequently, in 
this case a distribution of the form (2.7) turns out to be sufficiently general. 

In the case of the initial distribution (2.7), it is easy to obtain the expression 

l,~(s) = (t - -  s-=)n(l - -  ,-3) ( 2 . 8  ) 

for the quantity fm defined by (2.1). It is taken into account here that cracks are not 
established for a constant deformation rate; consequently, all the cracks are growing, where 
the initial dimension exceeds the quantity K2/T~ff. The fraction of these cracks out of 
their total number evidently equals (I/s - K2/~ff), from which we have (2.8). 

Substituting (2.8) into (2.4), and integrating, we obtain 

/ �9 g ~ s ,  s<<.t, 

! 

The maximal stress governed by the relationship (2.6) is smax = (i - R)-~. For small de- 
formation rates (R << i) the excess of the maximal value smax over the elastic limit s = 1 
turns out to be quite small: Smax - 1 = R/2. It is hence seen that experimental observa- 
tion of the "transition" zone where the transition from the elastic to the plastic flow re- 
gime occurs is quite difficult. 

Let us turn to determination of the magnitude of the fracture rock pieces. Fracture 
can occur on the almost elastic section, in the transition zone, and on the asymptotic. The 
case of fracture on the linear section corresponds to the condition 

I . ~  < ~, ( 2 . 9 )  

where sp is the stress at the time of fracture, and the fracture condition takes the form 

Sp - -  I = (2R~D2~)l /a .  (2.10) 

S u b s t i t u t i n g  ( 2 . 8 )  a n d  ( 2 . 1 0 )  i n t o  ( 2 . 9 ) ,  we s e e  t h a t  f r a c t u r e  o c c u r s  on  t h e  l i n e a r  s e c t i o n  
i f  t h e  c o n d i t i o n  R >> 16D2/g  2 i s  s a t i s f i e d .  I n  t h i s  c a s e ,  we o b t a i n  t h e  f o l l o w i n g  e x p r e s -  
s i o n  f o r  t h e  mean s i z e  o f  t h e  p i e c e s :  Lm = ( g D 2 / 4 R )  1 / s .  

The  s e c o n d  c a s e  t h a t  a l l o w s  a n a l y t i c  e x a m i n a t i o n  c o r r e s p o n d s  t o  f r a c t u r e  on t h e  a s y m p -  
t o t i c .  The  c o n d i t i o n  Smax - Sp << Smax - 1 = R / 2  s h o u l d  b e  s a t i s f i e d  h e r e .  C o n s e q u e n t l y ,  
t h e  mean d i m e n s i o n  o f  t h e  p i e c e s  o f  f r a c t u r e d  r o c k  i s  f o u n d  s i m p l y  f r o m  t h e  c o n d i t i o n  
f m ( s m a x )  = R. T h e n  

F~= DIVe, (2.11) 

The c o n d i t i o n  f o r  a p p l i c a b i l i t y  o f  t h i s  a p p r o x i m a t i o n  w i l l  b e  d e t e r m i n e d  b y  t h e  i n e q u a l i t y  
R << 4D2/g  2.  

T h e r e f o r e ,  f o r  s m a l l  d e f o r m a t i o n  r a t e s ,  t h e  mean s i z e  o f  t h e  p i e c e s  o f  f r a c t u r e d  r o c k  
t u r n  o u t  t o  b e  i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  s q u a r e  r o o t  o f  t h e  d e f o r m a t i o n  r a t e .  

3 .  L e t  u s  e x a m i n e  t h e  i n f l u e n c e  o f  m i c r o c r a c k  o r i e n t a t i o n .  We a s s u m e  t h a t  t h e r e  i s  
no i s o l a t e d  d i r e c t i o n  i n  t h e  med ium p r i o r  t o  l o a d i n g .  I n  t h i s  c a s e  t h e  m i c r o c r a c k  a n g l e  
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distribution should be isotropic: n0(Z, 0) = (l/v)n0(Z) (0 is the angle between the plane 

of the crack and the principal direction oi). 

At each instant the angular density of the growing cracks in the direction 0 is 

Nm(O) t - o  . ~1 1 ~o 
�9 ~ ~ff (0) j ~2. elf (0) 

where ~eff(0) is taken from (1.3). 

Integrating (3.1) with respect to the angles e, we obtain the total number of growing 
cracks. If the condition R << I is satisfied, then a narrow domain of angles 10 - 001 << i 
operates near the directions of the maximal effective stresses governed by the relationship 
cot 260 = ~. In this case, the total number of growing cracks is given by the formula 

N' [ . . . .  l '  

where ~eff = Teff(00) is the effective stress in the direction 00. 
tion of Sec. 2, we have 

( 3 . 2 )  

In the dimensionless nota- 

(3.3) 

where a = 81(3~42-) is a numerical coefficient. 

Let us note that without taking account of the orientation for s - I << i, fm(s) would 
be a linear function of s - i, as seen from (2.8). The nonlinearity of (s - i) in (3.3) is 
due to the dependence of the width of the angle within which crack growth is possible, on 
the stress. Moreover, an additional effect occurs because of the presence of the last factor 
in (3.3), in whose denominator is (iol - o31)/2 = t 0 + ~P. For strong hydrostatic reduction 
(P >> t0) this factor diminishes the total number of growing cracks substantially. If the 
reduction is negligible, then this factor is close to one. On the whole, the influence of 
microcrack orientation reduces to a change in the dependence of the number of growing cracks 
on the stress. 

For a dimensionless greatest possible stress we obtain Smax - I = (Rla) 2/3 from (2.4) 
with (3.3) taken into account. Here, if the condition 

s p - - t  [( 5.D ~6 ~1121~1 
Smax_ t ~ L \ ~ 7  ~ j  ~ I  ( 3 . 4 )  

is satisfied, the fracture will occur on the linear section of the deformation curve. In 
this case the mean size of a piece of fracture rock is 

t,/ I ~ - % t )"". d/l* 2;. (3.5) 

2 

Ff5 DV~41 ~ 
When I-- [tT-~) h-J ~ i, the fracture occurs on the asymptotic and the mean size of the piece 

is determined by (2.11). 

4. We turn to a comparison of the results of the model proposed and the experimental 
data in [4], where slow compression of cylindrical specimens was performed at a constant 
axial deformation rate E l = const and constant radial reduction o 2 = const, achieved by 
plastic flow of the metal holder. Such geometry differs somewhat from the case considered 
of a constant shear deformation rate under a constant normal pressure. However, assuming 
linearity of the dependence of the bulk deformations on the pressure and taking account of 
(i.I), the following expression is easily obtained for the deformation rate: 

3 �9 /(1 t \  r dT AvP Nm' (4 i) 
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where K is the bulk compression modulus. 

This equation is actually equivalent to (I.i), and hence the solutions of Sec. 3 are 
applicable to it. 

The quantity A can be estimated by using the connection between the maximal critical 
opening and the limit stress concentration factor [3]. Thus, for media of the epoxy resin 
type we obtain A - 10 -6 cm. The ratio g = ~0/G for colophony is about 10 -3 if the shear 
strength is taken as t0; we take -10 3 cm -2 as Nt [ii]. The question on estimating the crack 
growth rate under slow deformation when the crack growth occurs because of plastic flow at 
the apex is more complicated. Consequently, it is reasonable to assume that an increase in 
the crack length occurs because of absorption of the dislocations. In this case we obtain 
the estimate 

vp  ~ N~ '~b , , d  ~ i O - * L ,  d , 

where Nd and vd are the density and velocity of dislocation motion, and b is the Burgers 
vector. Taking the limit value vd - 105 cm/sec for vd, we have vp - i0 cm/sec. 

Two deformation rates El = 3"10-6 and 9-10 -5 sec -l were investigated in [4]. Then, by 
using the model parameters presented above and taking account of (4.1), we find R = 4.5-10 -~ 
and 1.4.10 -2 . 

For these values of the parameters the left side of the inequality (3.4) equals 0.3, 
which affords a foundation for determining the mean size of the pieces by using (3.5). For 
the deformation rates El = 3"i0-6 and90.10-6sec -I used in experiment [4], (3.5) yields the 
mean size 53 and ii mm, respectively, for the pieces. The experimental dimensions have a 
substantially lower value, 13 and 3.9 mm, respectively. Such a strong discrepancy between 
the results is apparently due to the additional granulation of the already fractured medium 
described in [6]. A condition for applicability of the formulas obtained, (3.5) and (2.11), 
is a drop in the stresses right after the intersection of cracks, while the loading was exe- 
cuted in the experiment until the attainment of a definite value of deformation and the piece 
size is unknown at the time of fracture. It is clear that under these conditions (2.11) for 
fracture on the asymptotic should yield results closer to the experimental values. The mean 
size of pieces computed by (2.11) equal 14 and 2.5 mm, respectively, for the two deformation 
velocities, which is in good agreement with the results of the experiment. In the case of 
fracture on the asymptotic the mean size of a piece given by (2.11) is independent of the 
total number of cracks Nt, which we do not know in advance. 

It should be noted that experiments with a greater number of deformation rates are de- 
sirable, since it is impossible to confirm the dependences obtained by two experimental 
points. It can be expected that for small deformation rates the dependence of the mean size 
of a piece on the deformation velocity will be close to _~-I/2, and for higher rates to _~-3/7 

The authors are grateful to B. M. Tulinov for valuable discussion during the research. 
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VOID FORMATION, EQUATIONS OF STATE, AND STABILITY 

OF SUPERPLASTIC DEFORMATION OF MATERIALS 

O. B. Naimark UDC 539.217.1+539.214 

The term "superplastic" is taken to indicate a state and behavior of materials in which 
there is a significant increase in the capacity for deformation (sometimes by hundreds or 
thousands of a percent) without signs of macroscopic fracture and with a simultaneous de- 
crease in the flow stress [i, 2]. It has now been established that superplasticity is seen 
in nearly all engineering alloys based on iron, nickel, titanium, and aluminum. This in- 
cludes hard-to-deform tool and heat-resistant steels and alloys, composites, cermets, and 
ceramics. 

Two main types of superplasticity are traditionally recognized: structural (isothermal) 
superplasticity, due to an ultrafine structure; superplasticity associated with a transforma- 
tion in the phase-transition temperature range. The features of the manifestation of super- 
plasticity demonstrate the need to allow for the structure of the material, while the strong 
effect of strain rate on superplasticity regimes indicates the need for proper description 
of relaxation processes. The present article studies the effect of the structure of the mate- 
rial and void formation on superplastic behavior and its stability. 

The main structural sign of superplastic deformation for a given temperature-rate re- 
gime is mass displacement of grains of the "overflow" type. The massive nature of such dis- 
placements ensures an exceptionally high degree of plasticity without appreciable deforma- 
tion of individual grains. The development of flow which is almost "hydrodynamic" in char- 
acter with respect to each specific grain is naturally connected with the appearance of free 
volume. It is known that plastic deformation is accompanied by the formation of microcracks 
and voids. This phenomenon has been given the name "plastic loosening" [3]. In [4, 5] a 
study was made of the mechanism of superplasticity accompanied by intensive void formation. 
It was shown that the presence of voids and microcracks is an important structural factor 
which ensures an unusually high degree of plastic strain. 

As a parameter determining the volume concentration and primary orientation of voids 
and microcracks, we might use the symmetrical tensor Pik = n<sik >, where n is the number of 
microcracks in a unit volume, while the "microscopic" quantity 

s~ = sv~v k ( 1 ) 

characterizes the volume and orientation of a normal-rupture microcrack with the base SD = 
SDv and the vector b = by for the jump in displacements [6]. The volume of the microcrack is 
s = Sp sik = SDb, while the structure of the tensor sik, which is bilinear in relation to the 
components of the unit vector 9, is similar, for example, to the structure of the orienta- 
tion tensor in the physics of polymers and pure liquids [7]. 

The laws of crack formation in polycrystalline solids are related to the considerable 
heterogeneity of the microstructure [8]. Dislocation pileups, boundaries of blocks, and in- 
tergranular boundaries are nuclei of microcracks in metals. Nuclei exceeding a certain 
critical size are capable under certain conditions of increasing their volume and develop- 
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